Highest vectors of representations (total 17) ; the vectors are over the primal subalgebra. | \(-g_{11}+g_{-7}\) | \(g_{6}+g_{-1}\) | \(-g_{5}+g_{-3}\) | \(-h_{5}+h_{3}\) | \(-h_{6}+h_{1}\) | \(-g_{3}+g_{-5}\) | \(g_{1}+g_{-6}\) | \(-g_{7}+g_{-11}\) | \(g_{20}\) | \(g_{25}\) | \(g_{14}\) | \(g_{19}+g_{8}\) | \(g_{27}+g_{8}\) | \(g_{13}\) | \(g_{22}\) | \(g_{17}\) | \(g_{2}\) |
weight | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(\omega_{1}\) | \(\omega_{1}\) | \(\omega_{1}\) | \(\omega_{1}\) | \(\omega_{1}\) | \(\omega_{1}\) | \(\omega_{1}\) | \(\omega_{1}\) | \(\omega_{2}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(-2\psi_{1}-2\psi_{2}\) | \(2\psi_{1}-4\psi_{2}\) | \(-4\psi_{1}+2\psi_{2}\) | \(0\) | \(0\) | \(4\psi_{1}-2\psi_{2}\) | \(-2\psi_{1}+4\psi_{2}\) | \(2\psi_{1}+2\psi_{2}\) | \(\omega_{1}-2\psi_{1}-2\psi_{2}\) | \(\omega_{1}+2\psi_{1}-4\psi_{2}\) | \(\omega_{1}-4\psi_{1}+2\psi_{2}\) | \(\omega_{1}\) | \(\omega_{1}\) | \(\omega_{1}+4\psi_{1}-2\psi_{2}\) | \(\omega_{1}-2\psi_{1}+4\psi_{2}\) | \(\omega_{1}+2\psi_{1}+2\psi_{2}\) | \(\omega_{2}\) |
Isotypical components + highest weight | \(\displaystyle V_{-2\psi_{1}-2\psi_{2}} \) → (0, 0, -2, -2) | \(\displaystyle V_{2\psi_{1}-4\psi_{2}} \) → (0, 0, 2, -4) | \(\displaystyle V_{-4\psi_{1}+2\psi_{2}} \) → (0, 0, -4, 2) | \(\displaystyle V_{0} \) → (0, 0, 0, 0) | \(\displaystyle V_{4\psi_{1}-2\psi_{2}} \) → (0, 0, 4, -2) | \(\displaystyle V_{-2\psi_{1}+4\psi_{2}} \) → (0, 0, -2, 4) | \(\displaystyle V_{2\psi_{1}+2\psi_{2}} \) → (0, 0, 2, 2) | \(\displaystyle V_{\omega_{1}-2\psi_{1}-2\psi_{2}} \) → (1, 0, -2, -2) | \(\displaystyle V_{\omega_{1}+2\psi_{1}-4\psi_{2}} \) → (1, 0, 2, -4) | \(\displaystyle V_{\omega_{1}-4\psi_{1}+2\psi_{2}} \) → (1, 0, -4, 2) | \(\displaystyle V_{\omega_{1}} \) → (1, 0, 0, 0) | \(\displaystyle V_{\omega_{1}+4\psi_{1}-2\psi_{2}} \) → (1, 0, 4, -2) | \(\displaystyle V_{\omega_{1}-2\psi_{1}+4\psi_{2}} \) → (1, 0, -2, 4) | \(\displaystyle V_{\omega_{1}+2\psi_{1}+2\psi_{2}} \) → (1, 0, 2, 2) | \(\displaystyle V_{\omega_{2}} \) → (0, 1, 0, 0) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | \(W_{9}\) | \(W_{10}\) | \(W_{11}\) | \(W_{12}\) | \(W_{13}\) | \(W_{14}\) | \(W_{15}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
|
|
| Cartan of centralizer component.
|
|
|
|
|
|
|
|
|
|
| Semisimple subalgebra component.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(\omega_{1}\) \(-\omega_{1}+\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}+\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}+\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}+\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}+\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}+\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}+\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}\) | \(\omega_{2}\) \(3\omega_{1}-\omega_{2}\) \(\omega_{1}\) \(-\omega_{1}+\omega_{2}\) \(-3\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(3\omega_{1}-2\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}\) \(-3\omega_{1}+\omega_{2}\) \(-\omega_{2}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(-2\psi_{1}-2\psi_{2}\) | \(2\psi_{1}-4\psi_{2}\) | \(-4\psi_{1}+2\psi_{2}\) | \(0\) | \(4\psi_{1}-2\psi_{2}\) | \(-2\psi_{1}+4\psi_{2}\) | \(2\psi_{1}+2\psi_{2}\) | \(\omega_{1}-2\psi_{1}-2\psi_{2}\) \(-\omega_{1}+\omega_{2}-2\psi_{1}-2\psi_{2}\) \(2\omega_{1}-\omega_{2}-2\psi_{1}-2\psi_{2}\) \(-2\psi_{1}-2\psi_{2}\) \(-2\omega_{1}+\omega_{2}-2\psi_{1}-2\psi_{2}\) \(\omega_{1}-\omega_{2}-2\psi_{1}-2\psi_{2}\) \(-\omega_{1}-2\psi_{1}-2\psi_{2}\) | \(\omega_{1}+2\psi_{1}-4\psi_{2}\) \(-\omega_{1}+\omega_{2}+2\psi_{1}-4\psi_{2}\) \(2\omega_{1}-\omega_{2}+2\psi_{1}-4\psi_{2}\) \(2\psi_{1}-4\psi_{2}\) \(-2\omega_{1}+\omega_{2}+2\psi_{1}-4\psi_{2}\) \(\omega_{1}-\omega_{2}+2\psi_{1}-4\psi_{2}\) \(-\omega_{1}+2\psi_{1}-4\psi_{2}\) | \(\omega_{1}-4\psi_{1}+2\psi_{2}\) \(-\omega_{1}+\omega_{2}-4\psi_{1}+2\psi_{2}\) \(2\omega_{1}-\omega_{2}-4\psi_{1}+2\psi_{2}\) \(-4\psi_{1}+2\psi_{2}\) \(-2\omega_{1}+\omega_{2}-4\psi_{1}+2\psi_{2}\) \(\omega_{1}-\omega_{2}-4\psi_{1}+2\psi_{2}\) \(-\omega_{1}-4\psi_{1}+2\psi_{2}\) | \(\omega_{1}\) \(-\omega_{1}+\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}\) | \(\omega_{1}+4\psi_{1}-2\psi_{2}\) \(-\omega_{1}+\omega_{2}+4\psi_{1}-2\psi_{2}\) \(2\omega_{1}-\omega_{2}+4\psi_{1}-2\psi_{2}\) \(4\psi_{1}-2\psi_{2}\) \(-2\omega_{1}+\omega_{2}+4\psi_{1}-2\psi_{2}\) \(\omega_{1}-\omega_{2}+4\psi_{1}-2\psi_{2}\) \(-\omega_{1}+4\psi_{1}-2\psi_{2}\) | \(\omega_{1}-2\psi_{1}+4\psi_{2}\) \(-\omega_{1}+\omega_{2}-2\psi_{1}+4\psi_{2}\) \(2\omega_{1}-\omega_{2}-2\psi_{1}+4\psi_{2}\) \(-2\psi_{1}+4\psi_{2}\) \(-2\omega_{1}+\omega_{2}-2\psi_{1}+4\psi_{2}\) \(\omega_{1}-\omega_{2}-2\psi_{1}+4\psi_{2}\) \(-\omega_{1}-2\psi_{1}+4\psi_{2}\) | \(\omega_{1}+2\psi_{1}+2\psi_{2}\) \(-\omega_{1}+\omega_{2}+2\psi_{1}+2\psi_{2}\) \(2\omega_{1}-\omega_{2}+2\psi_{1}+2\psi_{2}\) \(2\psi_{1}+2\psi_{2}\) \(-2\omega_{1}+\omega_{2}+2\psi_{1}+2\psi_{2}\) \(\omega_{1}-\omega_{2}+2\psi_{1}+2\psi_{2}\) \(-\omega_{1}+2\psi_{1}+2\psi_{2}\) | \(\omega_{2}\) \(3\omega_{1}-\omega_{2}\) \(\omega_{1}\) \(-\omega_{1}+\omega_{2}\) \(-3\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(3\omega_{1}-2\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}\) \(-3\omega_{1}+\omega_{2}\) \(-\omega_{2}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{-2\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{2\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{-4\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{0}\) | \(\displaystyle M_{4\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{-2\psi_{1}+4\psi_{2}}\) | \(\displaystyle M_{2\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{\omega_{1}-2\psi_{1}-2\psi_{2}}\oplus M_{2\omega_{1}-\omega_{2}-2\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}-2\psi_{1}-2\psi_{2}} \oplus M_{-2\psi_{1}-2\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}-2\psi_{1}-2\psi_{2}}\oplus M_{-2\omega_{1}+\omega_{2}-2\psi_{1}-2\psi_{2}} \oplus M_{-\omega_{1}-2\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{\omega_{1}+2\psi_{1}-4\psi_{2}}\oplus M_{2\omega_{1}-\omega_{2}+2\psi_{1}-4\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}+2\psi_{1}-4\psi_{2}} \oplus M_{2\psi_{1}-4\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}+2\psi_{1}-4\psi_{2}}\oplus M_{-2\omega_{1}+\omega_{2}+2\psi_{1}-4\psi_{2}} \oplus M_{-\omega_{1}+2\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{\omega_{1}-4\psi_{1}+2\psi_{2}}\oplus M_{2\omega_{1}-\omega_{2}-4\psi_{1}+2\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}-4\psi_{1}+2\psi_{2}} \oplus M_{-4\psi_{1}+2\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}-4\psi_{1}+2\psi_{2}}\oplus M_{-2\omega_{1}+\omega_{2}-4\psi_{1}+2\psi_{2}} \oplus M_{-\omega_{1}-4\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{\omega_{1}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus M_{-\omega_{1}+\omega_{2}}\oplus M_{0}\oplus M_{\omega_{1}-\omega_{2}}\oplus M_{-2\omega_{1}+\omega_{2}} \oplus M_{-\omega_{1}}\) | \(\displaystyle M_{\omega_{1}+4\psi_{1}-2\psi_{2}}\oplus M_{2\omega_{1}-\omega_{2}+4\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}+4\psi_{1}-2\psi_{2}} \oplus M_{4\psi_{1}-2\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}+4\psi_{1}-2\psi_{2}}\oplus M_{-2\omega_{1}+\omega_{2}+4\psi_{1}-2\psi_{2}} \oplus M_{-\omega_{1}+4\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{\omega_{1}-2\psi_{1}+4\psi_{2}}\oplus M_{2\omega_{1}-\omega_{2}-2\psi_{1}+4\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}-2\psi_{1}+4\psi_{2}} \oplus M_{-2\psi_{1}+4\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}-2\psi_{1}+4\psi_{2}}\oplus M_{-2\omega_{1}+\omega_{2}-2\psi_{1}+4\psi_{2}} \oplus M_{-\omega_{1}-2\psi_{1}+4\psi_{2}}\) | \(\displaystyle M_{\omega_{1}+2\psi_{1}+2\psi_{2}}\oplus M_{2\omega_{1}-\omega_{2}+2\psi_{1}+2\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}+2\psi_{1}+2\psi_{2}} \oplus M_{2\psi_{1}+2\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}+2\psi_{1}+2\psi_{2}}\oplus M_{-2\omega_{1}+\omega_{2}+2\psi_{1}+2\psi_{2}} \oplus M_{-\omega_{1}+2\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{3\omega_{1}-\omega_{2}}\oplus M_{\omega_{2}}\oplus M_{\omega_{1}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus M_{3\omega_{1}-2\omega_{2}} \oplus M_{-\omega_{1}+\omega_{2}}\oplus 2M_{0}\oplus M_{\omega_{1}-\omega_{2}}\oplus M_{-3\omega_{1}+2\omega_{2}}\oplus M_{-2\omega_{1}+\omega_{2}} \oplus M_{-\omega_{1}}\oplus M_{-\omega_{2}}\oplus M_{-3\omega_{1}+\omega_{2}}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{-2\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{2\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{-4\psi_{1}+2\psi_{2}}\) | \(\displaystyle 2M_{0}\) | \(\displaystyle M_{4\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{-2\psi_{1}+4\psi_{2}}\) | \(\displaystyle M_{2\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{\omega_{1}-2\psi_{1}-2\psi_{2}}\oplus M_{2\omega_{1}-\omega_{2}-2\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}-2\psi_{1}-2\psi_{2}} \oplus M_{-2\psi_{1}-2\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}-2\psi_{1}-2\psi_{2}}\oplus M_{-2\omega_{1}+\omega_{2}-2\psi_{1}-2\psi_{2}} \oplus M_{-\omega_{1}-2\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{\omega_{1}+2\psi_{1}-4\psi_{2}}\oplus M_{2\omega_{1}-\omega_{2}+2\psi_{1}-4\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}+2\psi_{1}-4\psi_{2}} \oplus M_{2\psi_{1}-4\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}+2\psi_{1}-4\psi_{2}}\oplus M_{-2\omega_{1}+\omega_{2}+2\psi_{1}-4\psi_{2}} \oplus M_{-\omega_{1}+2\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{\omega_{1}-4\psi_{1}+2\psi_{2}}\oplus M_{2\omega_{1}-\omega_{2}-4\psi_{1}+2\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}-4\psi_{1}+2\psi_{2}} \oplus M_{-4\psi_{1}+2\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}-4\psi_{1}+2\psi_{2}}\oplus M_{-2\omega_{1}+\omega_{2}-4\psi_{1}+2\psi_{2}} \oplus M_{-\omega_{1}-4\psi_{1}+2\psi_{2}}\) | \(\displaystyle 2M_{\omega_{1}}\oplus 2M_{2\omega_{1}-\omega_{2}}\oplus 2M_{-\omega_{1}+\omega_{2}}\oplus 2M_{0}\oplus 2M_{\omega_{1}-\omega_{2}} \oplus 2M_{-2\omega_{1}+\omega_{2}}\oplus 2M_{-\omega_{1}}\) | \(\displaystyle M_{\omega_{1}+4\psi_{1}-2\psi_{2}}\oplus M_{2\omega_{1}-\omega_{2}+4\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}+4\psi_{1}-2\psi_{2}} \oplus M_{4\psi_{1}-2\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}+4\psi_{1}-2\psi_{2}}\oplus M_{-2\omega_{1}+\omega_{2}+4\psi_{1}-2\psi_{2}} \oplus M_{-\omega_{1}+4\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{\omega_{1}-2\psi_{1}+4\psi_{2}}\oplus M_{2\omega_{1}-\omega_{2}-2\psi_{1}+4\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}-2\psi_{1}+4\psi_{2}} \oplus M_{-2\psi_{1}+4\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}-2\psi_{1}+4\psi_{2}}\oplus M_{-2\omega_{1}+\omega_{2}-2\psi_{1}+4\psi_{2}} \oplus M_{-\omega_{1}-2\psi_{1}+4\psi_{2}}\) | \(\displaystyle M_{\omega_{1}+2\psi_{1}+2\psi_{2}}\oplus M_{2\omega_{1}-\omega_{2}+2\psi_{1}+2\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}+2\psi_{1}+2\psi_{2}} \oplus M_{2\psi_{1}+2\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}+2\psi_{1}+2\psi_{2}}\oplus M_{-2\omega_{1}+\omega_{2}+2\psi_{1}+2\psi_{2}} \oplus M_{-\omega_{1}+2\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{3\omega_{1}-\omega_{2}}\oplus M_{\omega_{2}}\oplus M_{\omega_{1}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus M_{3\omega_{1}-2\omega_{2}} \oplus M_{-\omega_{1}+\omega_{2}}\oplus 2M_{0}\oplus M_{\omega_{1}-\omega_{2}}\oplus M_{-3\omega_{1}+2\omega_{2}}\oplus M_{-2\omega_{1}+\omega_{2}} \oplus M_{-\omega_{1}}\oplus M_{-\omega_{2}}\oplus M_{-3\omega_{1}+\omega_{2}}\) |